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I. INTRODUCTION

In 2014, the hit game 2048 became explosively popular, using
simple gameplay and stochastic elements to draw millions of
players. 2048 is a simple game played on a 4-by-4 board as
tiles with value 2 and 4 are randomly placed. Players aim to
combine tiles to create 2048 and larger power of 2 tiles to raise
their scores. The secret to the game’s acclaim is that despite
its incredible simplicity, it’s deceptively difficult to create the
largest powers of 2 and earn the highest scores. Indeed, it’s
actually difficult to lose the game for hundreds to thousands
of moves even with no strategy whatsoever.

Thus, beating the game with the highest scores is incredibly
hard for many traditional AI game-playing methods. Even in
the simplest case of allowing up to 2048 on a 4-by-4 board,
there are more than 100 billion different states; the exponential
number of board states combined with the stochastic element
of new tiles and most critically that poor decisions may not
result in a loss for thousands of moves make this an incredibly
difficult search problem.

Motivated by this, we aim to explore existing solutions and
heuristics that exist in games with large game spaces where
pruning is difficult. We explore expectimax optimization and
temporal difference methods on the extended 2048 problem,
and evaluate performance the performance of these algorithms
against a random player by using two different scoring metrics.

This report gives a comparison of the performance of three
different agents (a random agent, an expectimax agent, and
a temporal difference learning agent), including a brief study
of the environment, the methods used, challenges encountered
during the project, our current results, and future work that
can be done.

A. Team Member Contributions

All team members contributed to the writing of the reports
and presentation. Han Jiang implemented the temporal differ-
ence approach. Peter Ly implemented the expectimax algorithm.
Ron Nafshi collected data for the implementations on large
board sizes.

II. PROBLEM DESCRIPTION

A. Rules of the Game

In the general game, 2048 is played on an initially empty
N ×N board. At the start of each turn, a new tile randomly
appears on a random empty spot on the board. The cell on

which the new tile is placed is chosen uniformly at random,
and the number on the tile is 2 with probability 0.9 and 4
otherwise. On each turn, the player may force all tiles on the
board to slide left, right, up, or down, until they reach the edge
of the board or collide with another tile in the way. If a slide
would cause two tiles with the same power of 2 to collide, the
tiles merge into the next largest power of two. A tile may not
merge more than once in the same slide. The game continues
until the board is completely filled and no possible merges can
be made. A player may win 2048 by creating the namesake
2048 tile after many merges, but may continue to play until
they reach a stage where no possible merges can be made.

B. Environment Implementation

We first implement this environment in Python. We store the
game board as an N ×N array, where N is an argument given
by the user. The environment is used with a driver program,
which prompts a user or agent to select to move all tiles
up, down, left, or right. We also implement n-tuple temporal
difference learning in C++ for efficiency.

C. Computational Resources

We ran experiments on the smaller board sizes 2×2 to 4×4
on our local systems. We ran experiments on the larger board
sizes 5× 5 and 6× 6 on the Great Lakes computing clusters.

D. Challenge Analysis

In general, on an N -by-N game grid, the largest possible tile
is 2(N×N+1), meaning there will be at most (N×N+1)(N×N)

game states. In other words, the number of game states is
exponential in the area of the game board. Searching the entire
state space to identify optimal strategies in the game quickly
becomes infeasible due to this exponential growth with area
of the game board.

The stochastic nature of 2048 further complicates analysis;
after every move the player makes, a new tile is introduced to
a randomly chosen, empty tile on the grid. This uncertainty
has two components: 1) the exact cell on which the tile is
introduced and 2) the number on the tile.

There are two different scoring methods in 2048: a player
may win by creating a 2048 tile with a variety of board
configurations; alternatively, a score is kept by calculating the
total sum of the values of all tiles combined over the course
of the game. In this case, the maximum score is attained by



Fig. 1. An example of the highest achievable score on a standard 2048 board

a final configuration such as in Figure 1. We aim to explore
both the relaxed problem of creating just one 2048 (or larger
power of 2) tile, and the more complex task of attaining the
largest possible score on boards of arbitrary size.

III. RELATED WORK

Attempts to make probably perfect 2048 models have been
limited, largely due to the huge number of game states. Models
using Markov Chains were only able to make perfect models for
up to the 64 tiles, and even this small problem had more than
40 billion states [7]. Thus, models that can prune many moves
in advance or efficiently explore in this huge game space are
critical to finding better solutions. As a stochastic game, 2048
has been studied using mainly two different techniques. Initial
attempts to apply AI techniques to 2048 used the expectimax
algorithm and alpha-beta pruning of the game tree [1], [2]. The
expectimax algorithm and alpha-beta pruning are able to create
a 32768 tile in 36% of the games sampled on, and yielded
a median score of 387222 [3]. Reinforcement learning is the
other main technique used to study 2048 in AI, and is the
more utilized and effective technique. Szubert and Jaśkowski
(2014) utilized a class of model-free reinforcement learning
called temporal difference (TD) learning on a N-tuple network
to achieve a win rate of 97% [4]. Wu et al. (2014) extended
this result so that tiles with large numbers (32768) can be

Fig. 2. The arrow between the max node and the chance node represents
moving up. The arrows from the chance node to the new state represent some
(but not all) of the random outcomes possible after the player’s move.

achieved with high probability (31.75%) [5]. Jaśkowski (2017)
further refined this technique so that the 32768 tile could be
made in 70% of simulated games, and so that the average
score was greater than 600,000 [6]. Nearly every study of the
game 2048 applying these techniques is limited to variations
of 2048 with small 4-by-4 boards. The goal of this project is
to identify whether these techniques can be effectively applied
to significantly larger search spaces by studying the application
of the techniques to 2048 generalized to N ×N boards.

IV. METHODOLOGY

We explore three algorithms, a random algorithm, expecti-
max, and temporal difference learning to implement our 2048
agents. The performance of the random algorithm provides a
rough baseline to compare the performance of the expectimax
algorithm and the performance of the temporal difference
learning algorithm.

A. Random

The random agent is simply a naı̈ve agent which selects a
random direction to move on each turn, and terminates when
there are no more possible moves remaining.

B. Expectimax

The expectimax algorithm is an analog of the minimax
algorithm, where we have a maximizing player as in the
minimax algorithm, but replace the minimizing player with a
non-deterministic player/node. This induces a game tree with
an alternating layer structure in which each node represents a
board state. The branches from the nodes of the maximizing
player represent the actions of moving the board in the four
cardinal directions. The branches from the nodes of the chance
player represent all the possible placements of the new tile
after the maximizing player agent makes their move. See fig. 2
for a snippet of what this game tree looks like.



We then define the value of a node to be the the sum of
several different heuristics applied to the game board. Following
[1], we define heuristics based on the number of empty spaces
on the board, the closeness of tiles which are similar in value,
and the position of large value tiles. Boards which have a large
number of empty spaces, closely pack large tiles to each other,
and position the large tiles on the edge of the board have higher
heuristic value than boards which do not. These heuristics are
chosen to implement the strategy of putting large value tiles
in the corner, a strategy often used by human players.

A drawback of the expectimax algorithm, and other decision
tree approaches is the considerable depth of 2048 game
trees. Often, the depth of the tree is considerably large with
an exponential number of states, and because decision tree
approaches are essentially brute-force searches, we must limit
the depth of the search. To process the tree, we perform an
iterative deepening search as is performed in several other
references such as [1], [2].

C. Temporal Difference Learning

The second method we will use to learn the game temporal
difference learning. The basic idea of the learning agent is
by making moves and update the value table for the states.
The agent will choose the move which will generate the most
reward, and after making the move the agent will update the
state value of the state before it makes the move based on
the value of the reward, the state before the move as well
as the state after the move. We do need to make two main
modifications to the basic idea talked above because of the
special environment the mechanisms of the game 2048, which
will be discussed in the following subsections.

1) Evaluating Afterstates: As is introduced in previous
sections. In this game, after making a move, besides possible
merging of tiles with the same value, a random new tile will
also be generated. The randomness of the tile generation adds
stochasticity to the state value evaluation. To counter this
problem, instead of evaluating the new game state after each
move, we choose to evaluate the after state, which is the state
after the move and the possible merges but before the new
random state is generated. (The ”afterstate” is shown in the
figure below)

Fig. 3. Example of a afterstate, from [3]

According to several studies ( [4], [6], [5]), evaluating the
afterstates instead of the new game states significantly improves
the accuracy of the temporal difference learning agent.

2) Using Tuples as States: The second modification is about
the state representation of the game 2048. Intuitively we would
use the entire board as a state, but since theoretically, there
are 18 possible tile values in the game 2048, the state space
for the game 2048 (if we use the entire board as a state)
contains a possible number of 1617 ≈ 4.7× 1021 states, which
far exceed the computational limits. Like many other studies
on TD learning of the game, we utilize the value tables of
several feature vectors, which is called an n-tuple network,
to approximate the value of each state. An n-tuple network
is comprised of m ni-tuples, where m is the number of our
choice and ni denotes the size of the i-th tuple. Figure 4 is an
example of a 4-tuple and its look up table The example tuple is

Fig. 4. Example 4-tuple and its lookup table, from [3]

a vertical line consists of 4 tiles, to find the value for this tuple
we will look at the entry 0130 because we encode the empty
tile to 0, and a tile with value v is encoded to log2 v. For tuple
selection, we will use the same tuples as [5], which are the four
6-tuples shown in Figure 5. Since 217 is ideal and not reachable

Fig. 5. The four 6-tuples used by [5]

in almost all of the learning scenarios, we will just assume the



possible number of tiles, c, is 16 for easier implementation.
In this case, the number of entries in the look up tables of
the tuples are 4 × 166 ≈ 7 × 107, which is computationally
reasonable. We will then talk about the evaluation of the state
space if we choose to use tuples to represent the state space:

3) Evaluation using N -tuples: We will first create a look
up table based on the shapes and number of tuples we choose,
and initialize all entries to zero. For a state s, we will first
choose the action by evaluating the reward of the action and
the value of the afterstate reached using the action. Then, we
get both the after state s′ and the next state snext (afterstate
with a random generated tile). By the same method we will
get the after state of snext, s′next, as well as a reward rnext.
We will update the look up table by adding

α
m ·max{(rnext + V (s′next)− V (s′), 0}

to the 4 entries corresponding to s′ (Correspondence
illustrated in Figure 4). Note that α is the learning rate (we
currently set it to 0.1), and we divide by m (the number of
tuples) to “average” the gain on all tuples. The evaluation of
a state s, V (s), is by adding up the values of corresponding
tuples. Detailed learning procedure is provided by Algorithm
1.
Note that V (s) is the value of the board s, which is calculated

by adding up the values of the corresponding tuples. In our
implementation, we will first use only the 4 tuples provided in
[7] to see how the temporal difference learning behave with
only 4 tuples. Then we will add 4 more custom tuples shown
in Figure 6 to see how adding more selected tuples will affect
the performance of the agent.

Fig. 6. The four custom tuples

Algorithm 1 Temporal Difference Learning
1: function PLAYGAME
2: score ← 0
3: s ← Initialized Game State
4:
5: while s is not terminal state do
6: a ← argmaxa′∈A(s)EVALUATE(s, a

′
)

7: r, s
′
, s

′′ ← MAKEMOVE(s, a)
8: LEARN(s, a, r, s

′
, s

′′
)

9: score ← score + r
10: s ← s

′′

11:
12: end while
13: return score
14: end function
15:
16: function MAKEMOVE(s, a)
17: s

′
, r ← COMPUTEAFTERSTATE(s, a)

18: s
′′ ← ADDRANDOMTILE(s

′
)

19: return (r, s
′
, s

′′
)

20: end function
21:
22: function EVALUATE(s, a)
23: s

′
, r ← COMPUTEAFTERSTATE(s, a)

24: return r + V (s)
25: end function
26:
27: function LEARN((s, a, r, s

′
, s

′′
))

28: anext ← argmaxa′∈A(s′′ )EVALUATE(s
′′
, a

′
)

29: s
′

next, rnext ← COMPUTEAFTERSTATE(s
′′
, anext)

30: V (s
′
) + α(rnext + V (s

′

next)− V (s
′
))

31: end function

V. EXPERIMENTS

A. Evaluation

To evaluate the results, we will learn from 1000 gaming
instances, and calculate the win rate, calculated as the percent-
age of games in those 1000 where the agent achieves a 2048
tile, mean score, max score and max tile number reached of
those games. We then repeat the same for the next 1000 games,
which means the results of those new games are from an agent
which has already been trained for many game iterations. We
will iterate this process until the result converges or tend to
converge under a reasonable program runtime. In this case we
run it 100 times, which means 100×1000 = 100000 games to
learn. For temporal difference learning, we will set the learning
rate α to 0.1, let n = 1000, and run the report process for
1000 times. The tuple choice for 5 × 5 and 6 × 6 boards are
of same shapes to Figure 5.

B. Results

Tables I–VI provide the data detailing the percent of games in
which the random, expectimax agent, and temporal difference
agent achieve a certain value as the max tile in a single game.



Fig. 7. Average random agent scores increase exponentially with the dimension
of the board.

Fig. 8. Average number of moves taken by the random agent increase
exponentially with the dimension of the board.

We also more measurements that are specific to method, which
will be presented in the following section. Statistics for the
temporal difference learning agent on a 6 × 6 board are not
available due to time constraints for testing.

1) Random: The random agent, which serves as out baseline
method, performed quite poorly compared to the other two
methods as expected, but still exhibits exponential growth in the
number of moves and scores as the board dimension increases.

We also collect the average score per game (see fig. 7) and
average number of moves made per game (see fig. 8) in our
experiments for the random agent.

2) Expectimax: We observed that the average score
(cf. fig. 9) and the number of moves achieved by our expectimax
agent (cf. fig. 10) increases exponentially with the board size.
This matches our initial assumption that the analysis of 2048
would become more complex as the board size increases due
to increase in the number of game states. This performance
greatly improves on the performance of the random agent.

3) Temporal Difference Learning: Table VII provide more
detailed information for statistics of playing 2000 to 200000
games (Using 8 tuples). Figure 11 is the graph comparing the
win rate of agent learning with 4 tuples and and 8 tuples

Fig. 9. Average expectimax agent scores increase exponentially with the
dimension of the board.

Fig. 10. Average number of moves taken by the expectimax agent increase
exponentially with the dimension of the board.

TABLE I: Percent of games tile is the max achieved for 2× 2 boards

Max Tile Random Expectimax TD

4 39.1 30.1 22
8 46.1 9.9 10
16 14.7 59.2 67
32 0.1 0.8 3

TABLE II: Percent of games tile is the max achieved for 3× 3 boards

Max Tile Random Expectimax TD

4 0.1 0 0
8 6.2 0 0
16 37 0 0
32 48.9 1 1
64 7.7 26.3 19

128 0.1 60 65
256 0 12.7 15



TABLE III: Percent of games tile is the max achieved for 4× 4 boards

Max Tile Random Expectimax TD

16 0.5 0 0
32 10.6 0 0
64 44.3 0 0
128 39.4 0 0
256 5.2 0 0
512 0 2 2.3

1024 0 8.9 6.6
2048 0 46.7 23.8
4096 0 42.1 66.4
8192 0 0.3 0.9

TABLE IV: Percent of games tile is the max achieved for 5× 5 boards

Max Tile Random Expectimax TD

64 0.9 0 0
128 7.7 0 0
256 35.2 0 0
512 47.6 0 0

1024 8.6 0 0
2048 0 0 0
4096 0 1 1
8192 0 5 3
16384 0 38 31
32768 0 55 63
65536 0 1 2

TABLE V: Percent of games tile is the max achieved by random agent for
6× 6 boards

Max Tile Random

512 0.4
1024 7
2048 28.1
4096 51.7
8192 12.8
16384 0

TABLE VI: Percent of games tile is the max achieved by expectimax agent
for 6× 6 boards

Max Tile Expectimax

65536 17.1
131072 9.1
262144 54.5
524288 19.3

(4 tuples from [7] and the 4 custom tuples in Figure 6).
We notice that adding 4 additional representative tuples will
significantly increase the win rate of the agent, which indicates
the importance of choosing tuples that are as representative as
possible (discussed further in future works).

VI. FUTURE WORK

For expectimax, we noticed for 4× 4 boards that the depth
limit of the iterative deepening greatly affects the speed of the
agent. The branching factor of a game of 2048 is quite large
because we must simulate placing a random tile after every
possible move. This means that the branching factor is at most

TABLE VII: Statistics for the Agent

NumGames Mean Score MaxScore WinRate(%) MaxTile

2000 8255.45 17 164 0.3 2048
20000 26216.2 71 380 55.3 4096
40000 44620.2 130 276 85.7 8192
60000 53219.6 147 448 87.7 8192
80000 56041 132 704 90.7 8192
100000 58864.1 139 048 91.8 8192
120000 61141 139 024 93.4 8192
140000 61144.9 144 528 93.3 8192
160000 62222.1 151 332 93.3 8192
180000 62108.8 142 764 93.7 8192
200000 64136 173 984 94.9 8192

Fig. 11. Win Rate of the agent against games played

4 × N2 where N is the dimension of the board. To ensure
that we were able to complete data collection, we had to fix
the depth limit of the iterative deepening to at most 3 (that
is, at each root node in the game tree, we had the expectimax
agent plan for 3 player-computer pairs of moves). The trade-off
between depth limit and expectimax agent performance is not
well-understood, at it would be interesting to see how this
trade-off behaves.

For temporal difference learning, firstly we noticed that tuple
selection will have a significant influence on the performance
of the temporal difference learning agent. Thus figuring out
how to select the most ”representative” tuples will be a subject
of interest, in the future we will study the heuristics of tuple
selection and we can even use reinforcement learning to help
with the selecting the tuples. Moreover, we will try to improve
our TD agent from two perspectives: Selecting and adding
more tuples with better representations of the whole state than
[5], as well as applying the technique of multistage update
specified in [6].

We also find that Expectimax and Temporal Difference
Learning are both powerful algorithms in the extended 2048
search problem, performing much better than random in all



scoring metrics used. However, while both algorithms are able
to robustly score well as the board size increases, neither
algorithm is able to efficiently handle the exponential increase
of state space in the size of the board. Memory is not a concern
as the entire board can be stores as a NxN array, with the
(N × N + 1)(N×N) game states being the major issue for
extended 2048 algorithms. Using the Great Lakes Slurm HPC
Cluster available at the University of Michigan Ann Arbor,
completing just one game of 6x6 2048 took over 3 hours using
expectimax, and was too computationally expensive for our
temporal difference learning agent. On the 7x7 board, one game
played by the expectimax would not end in under 8 hours,
with similar results for temporal difference learning agent.
Future work may fruitfully explore how these two algorithms
generalize, as it is beyond of the computational resources used
in this study. Novel algorithms exploring this problem would
also benefit from analysis in reducing the size of the game
state even further.
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VII. APPENDIX

We include the data used to generate figs. 7 to 10.

TABLE VIII: Statistics collected for the random agent

Dimension Average score Avg. # of moves

2 20.668 7.11
3 170.68 33.206
4 960.136 113.757
5 6023.824 451.989
6 66793.524 3184.35

TABLE IX: Statistics collected for the expectimax agent

Dimension Average score Avg. # of moves

2 34.972 7.445
3 1136.832 105.657
4 44487.112 2163.954
5 516711.56 18678.01
6 14745584 204785.909
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