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Shortest Vector Problem

Problem (GapSVPγ)

Given a lattice, what is a “fairly” short non-zero vector in a given
lattice L? More precisely, find a non-zero vector v such that
∥v∥ ≤ γ · λ1(L)

SVP parameters

▶ Dimension of the lattice

▶ Definition of “shortest”
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Norms

Definition (Norm)

Let X be a vector space over the field R. A norm is a function
∥·∥ : X → R≥0 which satisfies the following properties:

▶ ∥x∥ = 0 if and only if x = 0 ∈ X ,

▶ ∥cx∥ = |c | · ∥x∥ for all c ∈ R and for all x ∈ X ,

▶ ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Norms are generalizations of length for vectors.

Example

Problems seen in this class are often with respect to the ℓ2 norm

mapping x 7→
√∑

x2i .

Other norms are sometimes of interest - for example, if we need to
guarantee that no single coefficient of a vector x grows too large,
we are interested in a bound on the ∥x∥∞.
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A simple result

Theorem
Let X be a finite dimensional vector space. Fix ∥·∥a and ∥·∥b to be
norms for X . Then there exist constants C1, C2 such that for all
x ∈ X

C1∥x∥a ≤ ∥x∥b ≤ C2∥x∥a.

In other words, the lengths of x ∈ X under any norm reveal partial
information about lengths x ∈ X under any other norm.

In particular, by Hölder’s inequality,

Theorem
Let X = Rn. Then ∥x∥p ≤ ∥x∥2 ≤

√
n∥x∥p.

So we can approximate lengths under the ℓ2 norm if we pay
√
n in

approximation factor and have knowledge of the distances under
the ℓp norm.



A simple result

Theorem
Let X be a finite dimensional vector space. Fix ∥·∥a and ∥·∥b to be
norms for X . Then there exist constants C1, C2 such that for all
x ∈ X

C1∥x∥a ≤ ∥x∥b ≤ C2∥x∥a.

In other words, the lengths of x ∈ X under any norm reveal partial
information about lengths x ∈ X under any other norm.

In particular, by Hölder’s inequality,
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Johnson-Lindenstrauss type tool

Definition (Embedding families for p <∞)

For any real 1 ≤ p <∞ and integers m ≥ n, we define a
distribution F(p, n,m) over embedding functions f : ℓn2 → ℓmp . We
can sample a function from F(p, n,m) by sampling n orthonormal
vectors in Sm−1 uniformly at random and let A be the m × n
matrix whose columns are the orthonormal vectors. Then define
f (x) ≜ νp(n,m) · Ax where νp(n,m) is a normalization factor.

Theorem ([FLM77])

There exists νp(n,m) such that for all p <∞, ε > 0 and n there is
m such that with probability at least 1− 2−Ω(n), a randomly chosen
embedding function f ∼ F(p, n,m) satisfies that for all x ∈ Rn

(1− ε)∥x∥2 ≤ ∥f (x)∥p ≤ (1 + ε)∥x∥2.
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Asymmetric embeddings

Definition (Embedding families for p =∞)

For any integers m ≥ n, we define a distribution F(∞, n,m) over
embedding functions f : ℓn2 → ℓm∞. We can sample a function from
F(∞, n,m) by taking A← N (0, 1)m×n. Then define
f (x) ≜ ν∞ · Ax where ν∞ = (2 ln(m/

√
lnm))−1/2 is a

normalization factor.

Theorem (Strengthened [Ind03] due to [RR06])

For any ε > 0, any large enough n, and any δ > 0, the family
F(∞, n,m) for m = (n log n + δ−1 + ε−1)O(1/ε) satisfies the
following:

max
v

Pr
f←F(∞,n,m)

[∥f (v)∥p ≥ (1 + ε)∥v∥q] ≤ δ

∀v ∈ Rn,Pr[∥f (x)∥∞ ≥ (1− ε)∥v∥2] ≤ 1−m2−Ω(n)
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Complexity of GapSVP

We can improve the approximation factor loss from
√
n to basically

nothing.

Theorem ([RR06])

For all ε > 0 and for all 1 ≤ p ≤ ∞, there is a randomized
polynomial time reduction from GapSVPγ in the ℓ2 norm to
GapSVP(1+ε)·γ in the ℓp norm.

Informally, this tells us that GapSVP is easier in the ℓ2 norm than
in any other ℓp norm.

Proof sketch
For 1 ≤ p <∞, apply [FLM77] in a straightforward way.
For p =∞, apply strengthened [Ind03].
The main idea is that every vector does not shrink much w.h.p.,
and a γ · λ1(L) length vector does not grow much w.h.p.
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Other results from [RR06]

Theorem
For any ε > 0, γ > 1, and any 1 ≤ p ≤ ∞, there is a randomized
Karp reduction from GapCVPγ under the ℓ2 norm to GapCVPγ′

under the ℓp norm.

Theorem
For any ε > 0, γ > 1 and any 1 ≤ p ≤ ∞, there is a reduction
from GapCVPPγ to GapCVPPγ′ where γ′ = 1−ε

1+ε · γ.
Each of these results essentially follows the same proof as in the
case of GapSVP, where we construct the embedding, and apply
the embedding in a “black-box” manner.
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(Some) Collected results under arbitrary norms

The techniques of Regev and Rosen give inapproximability results
for lattice problems under different norms (when combined with
complexity assumptions).

Theorem
There is no efficient algorithm for GapSVPΘ(1) under the ℓ1 norm
unless NP ⊆ RP.

Theorem
There is no efficient algorithm for GapSVPΘ(1) under the ℓ∞ norm
unless NP ⊆ RP.
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Continuing the work

Their techniques covered do not extend to all lattice problems over
all ℓp norms!

Open Questions

▶ Is there a reduction from GapCRPγ under the ℓ2 norm to
GapCRPγ′ under the ℓ∞ norm where γ′ = (1− ε) · γ for
ε > 0?

▶ Are lattice problems equivalently difficult regardless of the
norm used i.e. are there reductions which go from the ℓp norm
to the ℓ2 and can we extend these reductions to other norms?

▶ What other lattice problems seem to be most easy in the ℓ2
norm?



Working in other norms

Can we relate other norms to the ℓp norms?

An approach

Bourgain’s metric embedding theorem provides a way to convert
from any norm to the ℓ2 norm.
This seems harder to use however, because it seems many results
rely on the linearity of the embedding to limit the amount of
points to “check” under embedding, and because the
approximation factor picked up from the embedding can be pretty
large. Furthermore, the proof of Bourgain’s metric embedding
theorem requires that we work over a finite set of points.
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